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Abstract

The previous model of electrofocusing in a tapered capillary was extended to cover both focusing and
non-focusing modes of capillary electrophoresis. The more general equation derived can be used either for tapered
or for funnel-like segments of capillary for which the product of the local cross-section and the length-based
separation coordinate is constant. The particular forms of the equation are used to discuss the changes in the
variance of a moving Gaussian zone in practically interesting cases of electrophoresis in a capillary of non-uniform

cross-section.
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1. Introduction

Transient electrophoretic effects are under-
stood here as changes in volume and/or width of
the Gaussian concentration profile. The simplest
case is zone electrophoresis in a capillary of
uniform cross-section. Further, more pronounced
transitions occur when electrophoresis is carried
out in capillaries of non-uniform cross-section.
Such instances are interesting from several points
of view. They may bring some interesting fea-
tures, namely in the focusing modes of electro-
phoresis [1-6]. Also, non-uniform capillary
geometry could extend the applicability of de-
tection schemes [7-9]. However, non-uniform
capillaries may bring excessive band broadening,
as found in the case of a bubble detection cell [8]
or in the coupling of capillary limbs of Y- or T-
pieces [10]. In order to minimize the dispersion, a
smooth, gradual change in geometry is needed
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[7,8]. Transient processes also occur in focusing
in a capillary of uniform cross-section when a
step change of voltage is applied [11-14] or when
the zone is transferred from a wide channel into
a narrow capillary [5,15]. In such instances, the
speed of approach to the steady state is of
interest.

Recently, a model was suggested [1-3] which
enables an estimate to be obtained of the width
of a focused Gaussian zone which migrates in a
capillary with a shallow taper. In the suggested
model, a simplified analytical solution of the
continuity equation is possible for the constant
volume-based migration velocity and for the
particular geometry for which the product of the
length-based separation coordinate and the local
cross-section is constant.

In this work, the previous model [1-3] was
extended to obtain a more general equation for
calculation of the time dependence of dispersion
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of a Gaussian zone in both focusing and non-
focusing modes of electrophoresis. It can be
applied to both a capillary of uniform cross-
section and to a geometry specified in the model
used. With the help of the derived equation,
some practically interesting transient processes
are discussed.

2. Theory

The continuity equation is a partial differential
equation that will, upon solution, yield the con-
centration as a function of time and distance. It
was shown [16] that diffusion and diffusion-like
processes transform initial zones into Gaussian
zones in most practical cases. Thus, the Gaussian
function is the desired mathematical solution to
the differential equation. In the following treat-
ment, the changes in the environment influencing
the shape of the concentration profile are such
that the changes in the zone shape can be
described in terms of parameters of a Gaussian
curve. In other words, the zone variance can be
treated as a variable. For shallow, smooth
changes in a capillary cross-section, the continui-
ty equation was approximated [1] by a balance of
dispersion and focusing fluxes within the Gaus-
sian zone.

The equation for an actual length-based vari-
ance, o, of the Gaussian zone which migrates in
a constant gradient of migration velocity, dv/
dy = constant, and with a constant diffusion
coefficient, D = constant, can be written as [1]

D*-D dv .
0_2 _dy ()

where the effective dispersion coefficient, D*, is
related to the changes in volume of the Gaussian
zone by

— 2
v doy,

br=7a"av )

where A is the local cross-section, v is the mean
local velocity of the zone centre, v = dy/dt, o> is
the volume-based variance of the Gaussian zone,
dV is the eclement of displaced volume, dV =

® dr, and ® is volume-based velocity of the zone,
& = Av. Under a constant electric current, I, ® is
constant. Since, in a capillary with a shallow
taper, o, = Ao, we may write for the effective
dispersion coefficient

D* _E(dlnaz N dlnA2>
dy dy

22
o
By insertion of Eq. 3 into Eq. 1, we obtain after
rearrangement

3)

ding® 2dv 2dinA 2D @
de T dy dr P

The solution of Eq. 4 may be simplified for the
special shape of the capillary for which Ay =
constant. Let us consider a segment of the
tapered capillary of length L =y, —y, and vol-
ume V,, over which the cross-section changes
from A, to A, (see Fig. 1). Then, the shape of
the capillary segment can be specified by the
equation

VL
Ay = Ing (5)
where
Y4
v, = f Ady (6)
Yo

and g is the ratio of the inlet cross-section, A, to
the outlet cross-section, A ;:

1=, @)

When a capillary of circular cross-section is
considered, the ratio of the inlet radius, r,, to the
outlet radius, ry, is ry/ry =1/q. It follows from
Egs. 5-7 that A is related to the displaced
volume, V, by

AO) _Ving
1“(7 =V ®)

For a shape of the capillary defined by Egs. 5-7
and for a constant ®, the second term of the
RHS of Eq. 4 is a constant and we may write

_dlnA_llg )
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where 1, is the time needed for migration of the
zone from y=y, to y=y,, t, =V /®. After
insertion of Eq. 9 into Eq. 4 and rearrangement,
we obtain

do’ ,fdv Ing
“at——Za' (d—y+T>+2D (10)

According to the model adopted, the last equa-
tion contains only two variables, namely o> and
t. After their separation, the equation can be
integrated and we obtain

2
o -7 2Dt
1 =
n< 0(2) —Z) 7 (11)

where ¢ is the time of zone migration through the
considered segment of tapered capillary, 0 <t <
t,, op is the length-based peak variance at the

beginning of the considered segment where y =
¥o» A=A, t =0 (see Fig. 1), and Z is a constant
given by

-D

~dv Ing
ay

Z (12)

Eq. 11 can be rearranged to the form which will
also be used for the discussion of the particular
cases:

~2Dt ~2Dt
o’ =0l e_Z“‘Z(eT—l) (13)

Although the applicability of this equation is
limited by the particular shape of the capillary, it
may be used at least for a semi-quantitative
estimation of the dispersion of the Gaussian zone
in practically interesting transient processes.

a
Y, L 1 Y
o —— b
Y
Y v, >
‘ L L
Y o l y

Fig. 1. Definition of the capillary shape. (a) Funnel-shaped capillary; (b) tapered capillary. y = Longitudinal separation
coordinate; A = variable cross-section; A, and A, = capillary cross-section at the inlet point, y,, and at the detection point, y,,
respectively; L = capillary length; V, = capillary volume; V, = volume of moving natural pH gradient; y -y, = part of the capillary
occupied by sampled solution at the beginning of the electrophoretic run.
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3. Discussion
3.1. The case of Z = *x

In a capillary of constant cross-section, ¢
approaches unity and In q is zero. Further, when
no mobility gradient is used, then dv/dy =0.
According to Eq. 12, Z approaches infinity and
the exponents in Eq. 13 tend to zero. Then, &”
may be expanded as 1 + x and Eq. 13 changes to
the description of zone dispersion in zone elec-
trophoresis in a capillary of uniform cross-section
(CZE):

o’ =op+2Dt (14)

as expected. The same result is obtained also for
dispersion of the zone in a capillary without
applied voltage, when dv/dy=0 and ¢ ap-
proaches infinity. The example may be found in
defocusing of a zone in isoelectric focusing (IEF)
after switching the voltage off [11-13].

3.2. The case of Z=—(Dt;)/(In q)

Let us discuss the migration of a Gaussian
zone in a capillary of non-uniform cross-section,
when no gradient of pH and/or mobility is used.
Then, g #1 and dv/dy = 0. Such a model can be
applied for CZE in a capillary of non-uniform
cross-section with the geometry specified by Eqgs.
5-7. It follows from Eq. 12 that

—Dt,

Z= Ing

(15)

Insertion of Eq. 15 into Eq. 13 gives the length-
based variance of the peak as a function of
migration time, ¢ (0 <z <t ):

2 2/t
o o, 2Dt (q L— 1)
== + 16
0(2) q 0'(2) 2Ing (16)

For ¢ > 1, which means a continuous decrease
of A with increasing y, the length-based zone
variance increases rapidly; the larger is g, the
faster is the increase in zone length.

The case with ¢ <1 is more interesting. It
means a continuous increase in the local cross-
section with the separation coordinate. Such an
instance may model the funnel-shaped capillary
or part of the limb in a Y-piece or the front part
of a bubble detection cell on a capillary (see Fig.
2).

Eq. 16 describes the variation of the length-
based zone variance with time; with constant I, it
can describe the peak variance as a function of
the displaced volume, V. The dependence of the
relative change of peak variance on the displaced
volume is illustrated in Fig. 3a for two values of g
(g=01,ry/ry,=32,and g =0.04, ry/ry=5) and
for the parameter (2D, )/o] set to 0.01. Indeed,
owing to the first term on the RHS of Eq. 16, the
length-based variance decreases with migration
of a zone into positions with a larger cross-

Fig. 2. Coupling of a uniform capillary to a funnel-shaped capillary. V, = Volume of the uniform separation capillary; other

symbols as in Fig. 1.
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Fig. 3. Dependence of the peak variance in CZE in a funnel-shaped capillary on the displaced volume. (a) Length-based variance
calculated from Eq. 16 for 2D, /o = 0.01; (b) contribution of funnel-shaped capillary to the time-based peak variance calculated
from Eq. 19 as a percentage of the inlet-time based peak variance, o, Curves: (1) ¢ = 0.04, ¢, /¢, = 0.01; (2) g = 0.04, ¢, /¢, = 0.003;
(3) g=0., ¢, /t,=0.01; (4) g =1, 7, /t, =0.01. V= Displaced volume; o’/ = ratio of actual length-based peak variance to the
inlet peak variance at y = y,; g =ratio of the inlet to the detection cross-sections (g = A,/A,); other symbols as in Fig. 1.

section. This effect was recently suggested for
sensitivity enhancement of optical detection [7-
9]. Actually, the first term on the RHS of Eq. 16
expresses the conservation of the zone volume,
while the second represents the contribution of
the capillary segment concerned with diffusion
spreading. When, owing to a small ¢, or a large
o>, the second term in the RHS of Eq. 16 is very
small in comparison with the first, the equation
expresses only the reduction of the length-based
variance in accordance with the increase in the
cross-section, as discussed previously [7,8] (see
also the straight lines in Fig. 3a). This depen-
dence can also be derived directly from Eq. 3 for
D*=0.

However, it can be seen from Fig. 3a that there
is a positive departure of the actual peak vari-
ance from this simple relationship when the zone
approaches places with a large cross-section. The
departure is caused by the second term on the
RHS of Eq. 16; it becomes more apparent when

we discuss the time-based zone variance which is
actually observed on the separation record. The
time-based zone variance o is given by

~

2
o-f

c‘qq

(17)

With the use of Egs. 8 and 17, we obtain for
constant ® = Av

A

=Zgn (18)

2
o

<

where U, is the mean linear velocity of the zone
at the inlet of the considered segment of the
funnel-shaped capillary, where y =y, and A =
A, (see Fig. 2). In order to show the contribution
of the funnel-like segment to the overall time-
based variance, it is useful to relate o to the
inlet time-based variance, o,. As long as o is
generated by zone electrophoresis in a capillary
of constant cross-section, we may relate o7 to the
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time of zone electrophoresis, t,, as o =2Dt,.
Thus, the inlet time based variance, o2, is 07, =
2Dt, /v ;. With the use of this relationship, and by
insertion of Eq. 16 into Eq. 18, we obtain for
time based zone variance, af,

2 —=2tlt
o t, (1-— L
___‘_Tz 1= L (__L> (19)
2Dt /v t,\ 2Ing

The RHS of Eq. 19 estimates the magnitude of
the relative contribution of the funnel-shaped
capillary to the overall time-based variance of
the zone. The term in parentheses is a shape
factor which indicates the increase in band
broadening due to the migration in the particular
shape relative to the capillary of uniform cross-
section with volume V, and cross-section A,.
Since t/t; =VIV, and t/t,=VIV,, the relative
change in the local o> with the displaced volume
can be illustrated by Fig. 3b.

In order to show the effect of the magnitude of
an increase in the capillary cross-section, let us
compared curves 1,3 and 4 in Fig. 3b in which
rqlry equals 5, 3.2 and 1, respectively, and the
ratio of the volume of the funnel-shaped segment
to the volume of the separation capillary, V, /V,
has been set to 0.01 in all three cases. It is
apparent that a funnel-shaped segment can con-
tribute considerably to the overall time-based
variance of the zone. For example, with ¢ = 0.1,
which means r /r,=3.2 (curve 2), the term in
parentheses on the RHS of Eq. 19 amounts to
215 aty=y,. With ¢ =0.04 and r,/r, =5 (curve
1), it increases to 100. Thus, if the volume of the
front part of bubble cell, which may be about
one third of the entire bubble cell volume,
amounts to 1% of the volume of the separation
capillary, the time-based variance generated in
the detection cell is comparable to the variance
generated in the separation capillary. In com-
parison with a uniform capillary segment of the
same V| (see curve 4), the increase in the time-
based variance is about 100 times larger. The
possible way out may be to reduce the volume of
the funnel-shaped segment (see curves 1 and 2),
where the increase in the cross-section is the
same, g = 0.04, but the volume of the segment is
3.3 times smaller for curve 2 in comparison with

curve 1. However, the use of too small a cell
volume acts against the demand for smooth
changes in geometry. In the limiting case of step
changes in the cross-section, the bubble cell
could be approximated by a reaction chamber.
Therefore, it is not surprising that a bubble cell
with a 15-fold increase in diameter was found to
be unsuitable for detection [8].

Although the above equations were derived
with strong simplifications, the results obtained
indicate the possible limits in the use of funnel-
shaped capillaries in electrophoresis. Qualitati-
vely, the strong increase in zone dispersion can
be explained as follows: the increase in the cross-
section leads to a decrease in the length-based
width of the zone (see the first term on the RHS
of Eq. 16). However, the decrease leads to an
increase in the axial concentration gradients
which speed up the longitudal diffusion fluxes
(see the second term on the RHS of Eq. 16).
Their effects are also proportional both to the
increase in the cross-section (see the parameter
g) and to the total time spent in the funnel-
shaped capillary (see the parameter ¢, or V).

Since the separate contributions to the overall
zone dispersion are additive [16], the dispersion
in the shapes which are different from those
specified by Eqgs. 5-7 can be approximated by
the sum of the individual dispersions in the
segments connected in series. For instance, the
dispersion at the outlet of the bubble cell may be
approximated by the dispersion in a conduit
composed of a funnel-shaped segment, a segment
with a constant cross-section and a tapered
segment. Also, such an approximation can be
used to estimate of the dispersion in a Y- or
T-piece.

3.3. The case of Z = —D/(dvidy)

Let us discuss the changes in the peak variance
during focusing in a capillary with a uniform
cross-section. Then, dA/dy =0, g =1 and dv/
dy # 0. Accordingly, Eqs. 11 and 13 model the
relaxation of a focused peak. Of practical interest
may be the cases in which, e.g., the voltage is
changed stepwise or the zone is transferred from
a tapered capillary with the geometry specified
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Fig. 4. Coupling of a tapered capillary to a capillary of uniform cross-section. Symbols as in Fig. 1.

by Egs. 5-7 to a capillary of uniform cross-
section (see Fig. 4).

In electrophoresis in a capillary of uniform
cross-section, the velocity gradient is a product of
the field strength and the mobility gradient, dv/
dy = E du/dy. From Eq. 12, the Z term then has
the form

Z=—q (20)
E dy

Usually in electrofocusing, dv/dy <0, so that

Z > (. From the simplified model of IEF [17-18],

it follows for the length-based variance of a

Gaussian zone under steady-state conditions that

gl=—7" (21)

Since the denominator on the RHS of Eq. 21 is
constant, the steady state can be reached also for
a migrating focused zone [19]. From comparison
of Eqs. 20 and 21, it is apparent that Z = o for
Z >0. By insertion of Eqs. 20 and 21 into Eq. 13
we obtain for the relaxation of a Gaussian zone
during focusing in a capillary of constant cross-
section

2

2 _-2Ditig?
g =0,¢ s

—ale - 1) (22)

Clearly, if o = a2, Eq. 22 reduces to o° =07,
which means the steady state determined by Eq.
21. Also, if o> becomes very large (or infinite,

e.g., when the voltage is switched off), for aé <<

o2, Eq. 22 becomes the equation of pure diffu-
sion spreading (see Eq. 14).

Eq. 22 is identical with the equation for relaxa-
tion of zones in IEF derived previously [11,12]
with the use of more involved mathematics [20].
It was early recognized from the experiments
[14] and verified by computer modelling [21-23]
that this equation is not generally applicable to
the early stages of IEF. It was found that the
initially flat concentration profile transforms into
two transient peaks which arise at the ends of the
initially rectangular concentration pulse, migrate
toward each other and finally merge. It was also
found [21] that Eq. 22 can describe the dynamics
of the focusing process if the final position of the
focused zone is in the centre of the segment in
which natural gradient is generated, and if o, is
not much smaller then the initial length of the
flat concentration profile, L., which is L, =
V,/A where V, is the volume of the generated
natural pH gradlent For L oo’ =50, it was
found [21] that the flat profile transforms directly
into a single peak and an error of less than 1%
will result from assuming linearity of the per-
formed mobility gradient. Similarly, L /o7 =
200 makes an error of 10% or less. With the use
of relationship for the variance of the rectangular
profile, of, = L3,/12, it appears that Eq. 22 can
be used for the approximation of focusmg dy-
namics of a Gaussian zone for which 0 < ¢’ /o’ <
15. When the pH of zone centroid remains
constant, Eq. 22 can also be used for focusing of
moving zones.

For the evaluation of some practically interest-
ing cases of focusing during the migration in
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capillary, let us introduce for the local mobility
gradient [1]

& aem v, A ®)

where du/d(pH) is the steepness of the mobility
vs. pH dependence of the considered compound
[du/d(pH) <0 for electrofocusing] and 6(pH)/
V, is the volume-based steepness of the linear
natural pH gradient, which is the pH difference,
8(pH), over the respective segment of gradient
volume V,. Further, since ® = Av and v can be
written as v = gFE for a capillary of constant
cross-section, we may write Eq. 22 or Eq. 11 in
the form

2 2
o T,
zo(3)
0-5 US
du/d(pH) V

X exp [Zﬁ(pH) fr V;] (24)

The calculated change in the ratio of the actual
peak variance to the steady-state peak variance,
o’lo?, is shown in Fig. 5 as a function of the
displaced volume, V, which is expressed as a
multiple of V,. The parameters in Eq. 24 were
chosen as of/o> =10 and the term &(pH){[du/
d(pH)]/n} equals —25 and -5 for curves 1 and

2, respectively. A rapid convergence of the peak
width toward the steady state can be expected
and a difference from the steady state within a
few per cent can be achieved during the displace-
ment of a fraction of V,. It should be noted that
the variance of peaks focused during their migra-
tion in a tapered capillary is expected to be
larger than the local o only by few per cent
[1-3], so that the condition (oi/o’—1)<<1
applies when the outlet of the tapered capillary is
coupled to the cylindrical capillary (see Fig. 4).
Hence only a very short cylindrical capillary
should be sufficient for achieving an acceptably
small departure from the steady state. This is
advantageous for the design of a separation
compartment in electrofocusing devices [5].

3.4. The case of Z expressed by Eq. 12

The gradient of migration velocity in a natural
pH gradient moving in a tapered capillary
specified by Egs. 5-7 can be expressed as [1]

dv du

v _p.de dinA
dy = dy

— nE 25

M dy (25)
The first term on the RHS of Eq. 25 is in-
dependent of the local cross-section. The in-

crease in electric field strength caused by the

10
52
r
6.

1 2
5 -
L Ll I
0 01 0.2 03 04
VY

Fig. 5. Relaxation of a focused peak in a capillary of uniform cross-section calculated from Eq. 24 for ailel=10 and
S(pH){[dp/d(pH))/ &} = —25 and -5 for curves 1 and 2, respectively. Symbols as in Figs. 1 and 3.
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increase in current density at a position with a
smaller cross-section is just counterbalanced by
the same decrease in the length-based steepness
of the pH gradient. The second term on the RHS
of Eq. 25 is constant because of the capillary
geometry has been specified by Eqs. 5-7. Thus,
the dv/dy term is constant as introduced in Eq.
1. Further, for narrow bands and a shallow taper,
it can be set v = pE [1]. With use of Egs. 9, 12
and 25 and v = dy/dt, we obtain for the constant
VA

I
du 2Ing
E'dy+ .

zZ= (26)

Based on Egs. 11, 13 and 26, a fast increase in
the length-based variance can be expected for
Z <(0; the higher is g >1, the faster is the
increase in the length-based variance with migra-
tion of the zone along the y coordinate. More
interesting are the instances where Z>0. In
order to simplify the notation, let us introduce
the constant variance of a zone focused in a
tapered capillary, o>, which is described by [1]

) D
o = 27)

E(_ZdlnA d#)
7y dy

The parameter o> is related to o through a
constant coefficient, €, by [1]

0.2
=(1 - 03) (28)

With the use of Eqgs. 9, 26 and 27 and v = gF, it
appears that Z = ¢ for Z >0. Then, Eq. 13 can
be rewritten as

o= a'é e—ZDt/(rE _ a_i(erZDt/oi _ 1) (29)
When o =02, o is constant, o = o>, as de-
rived prev10usly [1]. Further, when e =0, which
means o =o. according to Eq. 28, Eq. 29
transforms to Eq 22, which was discussed in
Section 3.3.

With the use of Egs. 23, 27 and 28, Eq. 29 or
Eq. 11 can be written in the form

2 -1-(%-1)
U'E O-E
du/d(pH) V]

X exp[Z(l — €)8(pH) - — Y v

g

(30)

The parameter € is related to the steepness of
the capillary taper, the steepmess of the pH
gradient and the analyte mobility by [1]

e —dup/d(pH) &(pH)

lnq=§- I : v ‘WL (31)

For g # 1 and € # 0, Eq. 31 can be substituted in
Eq. 30 and we obtain

2 2 2(e—1) 1t
ag ag 7t
—rﬂ=C%—Qqe i (32)

(2 (22

€ €

The instances with o # o> described the relaxa-
tion of a focused Gaussian zone during its
migration in a capillary with the geometry
specified by Eqs. 5-7. Let us discuss two cases of
practical interest.

The case of q <1 and Z>0

This condition expresses a the continuous
increase in A with the separation coordinate
which leads to € <0 (see Eq. 31). Similarly to
Section 3.2, the condition g <1 leads to a discus-
sion of the zone dispersion in a funnel-shaped
segment of a capillary. However, instead of zone
electrophoresis, focusing with mobilization is the
mode of separation here.

Let us discuss the zone dispersion in the inlet
part of a bubble detection cell (see Fig. 2). When
we take the cross-section ratio g =0.1 (i.e., ry/
ry, =3.2), then In g = —2.3. The volume of the
funnel-shaped part, V|, is substantially smaller
than the volume of the pH gradient, V,, so that
we set V /V, =001. The pH difference across
the whole gradient volume is set to 8(pH) =35
pH units and the [-du/d(pH)]/u term is set in
the range from 1 to 10 pH ' for good am-
pholytes (e.g., proteins and small net mobility).
Then, Eq. 31 gives € in the range from —10 to
—100. Such a value of € indicates that the zone is
far from the steady state in the funnel-shaped
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segment and thus Eqgs. 30 and 32 derived above
are not applicable. This statement also means
that the influence of a secondary (=focusing)
gradient is small in comparison with the influence
of non-uniform geometry. In other words, it
means that the first term in the denominator on
the RHS of Eq. 12 (i.e., the dv/dy term) can be
neglected in comparison with the second term.
This approximation leads to Eq. 15. The disper-
sion of the zone can then be treated similarly as
in Section 3.2. However, Eq. 21 should be used
for the estimation of o. It may be concluded
that in electrofocusing methods with mobiliza-
tion, the use of capillaries with a marked local
increase in cross-section will have similar fea-
tures to their use in zone electrophoresis.

The case of q>1 and Z >0

This condition describes the relaxation of a
focused Gaussian zone during its transport
through a tapered capillary. Since we want to
obtain a focused zone with a small departure
from the steady state, the capillary taper should
be shallow. For a constant length-based variance
of the zone, o° = ¢ = o2, such a condition can
be quantified by Eqs. 27 and 28 for 0<e<<1
[1]. Of practical importance is the case with
o, > o> which is closer to the loading of a real
sample on the inlet of the tapered capillary. As
indicated previously [22,23], soon after switching
the current on, the components of the natural
gradient are expected to order themselves ac-
cording to their p/ and an almost smooth natural
pH gradient is formed. However, the actual
width of the zone is far from that corresponding
to the local steady state. In order to present the
changes in zone variance graphically, let us take
the numerical values as follows: g = 10 and the
ratio of the total volume of the capillary, V,, to
the volume of the pH gradient, V, V, /V, =5 [1].
Since Vv, is regarded as a constant, the length of
the pH gradient close to the injection point, V,,,
can be described with the help of relationships
which are similar to Egs. 5-7. L, defined as

Lyo = Y40 — Yo, may be written as (see Fig. 1b)
Ve g% -1
Lo=2, "qimg (33)

When we take the typical values of V| =1 ul and

=0.01 mm’, we obtain from Eq. 33 L, =2.5
mm for g=10 and V,/V,=5. Now, when we
take o, =0.2 mm, 1t appears that (Lgo/a)
about 150 (or cr /o? =13), which allows us to
use Egs. 28- 32 to estlmate the dynamics of
focusing during the entire transport of a sample
from the capillary inlet toward the detection
point (see discussion in Section 3.3). Thus, when
the analyte is sampled together with background
polyampholytes and the centre of its zone has a
constant pH, its focusing can be estimated as
described by Eq. 32.

In Fig. 6, the ratio o’/o>, the ratio of the
concentration at the peak maximum, c,, to the
sampled concentration, c¢,, expressed as c/c,,
and the actual peak position, y —y,, are dis-
played as function of V/V, for ¢ =0.2 and (!
o> — 1) =12. Despite the numerous simplifica-
tions made in the calculations above, it can be
concluded from the o/ vs. V/V, dependence
calculated from Eq. 32 that the length-based
variance of the analyte zone is expected to
decrease rapidly so that it should approach o
after the displacement of a small fraction of V.

The distance of zone centre from the capillary
inlet, y —y, as a function of the displaced
volume is calculated with the help of Egs. 5-7
similarly to Eq. 33 as

VL qV/ \ 1

Y=YoT 4

d' qlng (34)

It is apparent from the graph in Fig. 6 that the
position of the zone changes slowly close to the
capillary inlet and the zone moves faster when
approaching the detection point at the narrower
end of the capillary.

The ratio of the analyte concentration at the
peak maximum to the uniform concentration in
the volume of sampled solution was estimated
from the mass balance as
Cm Vg 35
¢~ Aoin (%3)
The dependence of the standard deviation of the
zone on displaced volume was calculated from
Eq. 32 and the dependence of the local cross-
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Fig. 6. Relaxation of a focused peak in a tapered capillary. y~y, = Distance of the peak from the capillary inlet calculated from
Eq. 34; c_/c, = ratio of concentration at the peak maximum to sampled concentration calculated from Eq. 35; o’ lol = ratio

calculated from Eq. 32. Symbols as in Figs. 1 and 3.

section on displaced volume from Eq. 8. It is
apparent from the dependence of ¢, /c, on VIV,
shown in Fig. 6, that the concentration in the
peak maximum increases continuously as the
peak moves into positions with a smaller A. This
phenomenon has been pointed out previously
[1], and it follows from the conclusion that o, is
constant in a capillary with the geometry defined
by Egs. 5-7 (see Eq. 27).

Since the chosen € equals 0.2, the zone should
be close to the steady state at the outlet of the
tapered capillary (see Eq. 28). A zone which is
even closer to the steady state can be obtained
when the outlet cross-section of a tapered capil-
lary is coupled with the same cross-section of a
capillary with uniform geometry (see Fig. 4). The
changes in the zone variance in this coupled
capillary were discussed in Section 3.3. The
coupled uniform capillary can not only be con-
venient for improvement of the zone shape but
also it can be important for detection [5] since

uniform shapes can be made more easily, e.g.,
fused-silica capillaries for optical detection.

4. Conclusions

The equations derived support the unity of
electrophoretic methods which lead to Gaussian
zones, namely CZE and IEF. Despite the limita-
tion to a special shape of the capillary and a
number of simplifications, the present analytical
solution appears to go beyond the classical treat-
ments of CZE and IEF in the direction towards a
description of transient processes.

The applications of the derived equations to
practically interesting cases show the basic fea-
tures of electrophoresis in capillaries of non-
uniform cross-section and the possible directions
for the improvement of electrophoretic methods.
More complicated shapes can be treated as being
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composed of funnel-shaped, tapered and uniform
segments of the capillary.

The theoretical treatment of square-wave
zones in a tapered capillary was published else-
where [4].
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Symbols

Local cross-section of the capillary, vari-
able (m”)

Capillary cross-section at the inlet point
(m*)

Capillary cross-section at the detection
point (m?)

Concentration of focused ampholyte in
zone maximum, variable (mol m~>)
Concentration of focused ampholyte in
sampled volume V, (mol m )
Diffusion coefficient, constant (m” s™')
Effective dispersion coefficient, variable
(m” s

Field strength, variable (V. m™")
Electrical current, constant (A)

Length of capillary from y, to y, (m)
Initial length of natural pH gradient
from y, to y, (m)

Ratio of inlet to detection capillary
cross-section (Eq. 7), dimensionless
Capillary radius at the inlet point (m)
Capillary radius at the detection point
(m)

Time, variable (s)

Time of zone migration in uniform
capillary prior entering the non-uniform
capillary (s)

Time of migration of zone from y, to y,
®)

Lolcal migration velocity, variable (m
s )

v

SOS =< oS

S

Yo
Ya
ng

5(pH)

Linear velocity of the zone mean, vari-
able (m s™")

Linear velocity of the zone mean at
capillary inlet (m s ')

Volume displacement, variable (m*)
Capillary volume from the inlet point to
the detection point (m’)

Volume of uniform capillary connected
to inlet of non-uniform capillary (m®)
Volume of natural pH gradient, constant
(m*)

Length coordinate along the capillary
axis variable (m)

Coordinate of the capillary inlet (m)
Coordinate of the detection point (m)
Coordinate of front of natural pH gra-
dient at the start of focusing run (m)
Constant defined by Eq. 12, dimension-
less

pH difference over volume of natural
pH gradient, V,, constant (pH)
Parameter defined by Eq. 28, dimen-
sionless

Local effective mobility, variable (m2
vis™h

Effective mobility of the zone mean,
constant (m* V™' s™)

Actual length-based standard deviation
of Gaussian zone (m)

Actual volume-based standard deviation
of Gaussian zone (m*)

Local steady-state length-based standard
deviation of Gaussian zone (m)

Actual length-based variance of Gaus-
sian zone (m”)

Length-based variance of natural pH
gradient at the beginning of the focusing
run (m?)

Local steady-state length-based variance
of Gaussian zone (m’)

Actual time-based variance of Gaussian
zone (s°)

Time-based variance of Gaussian zone
at capillary inlet (s°)

Actual volume-based variance of Gaus-
sian zone (m°)

Length-based variance of zone at capil-
lary inlet (m?)
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o Length-based variance of zone defined
by Eq. 27 (m?)
P Volume velocity of migration, volume

displacement of the zone per time unit,
constant (m> s7')
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